

Mathematics: Units 3C and 3D Formula sheet

Number and algebra: Calculus

Differentiation

If
$$f(x) = y$$
, then $f'(x) = \frac{dy}{dx}$
If $f(x) = x^n$, then $f'(x) = nx^{n-1}$

If
$$f(x) = e^x$$
, then $f'(x) = e^x$

	Function notation		Leibniz Notation	
	У	<i>y</i> ′	У	<i>y</i> ′
Product rule	f(x) g(x)	f'(x) g(x) + f(x) g'(x)	u v	$\frac{du}{dx}v + u\frac{dv}{dx}$
Quotient rule	$\frac{f(x)}{g(x)}$	$\frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$	$\frac{u}{v}$	$\frac{\frac{du}{dx}v - u}{\frac{dv}{dx}}$
Chain rule	f(g(x))	f'(g(x)) g'(x)	y = f(u) and $u = g(x)$	$\frac{dy}{du} \times \frac{du}{dx}$

Integration

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c \qquad n \neq -1 \qquad \qquad \int e^{x} dx = e^{x} + c$$

Fundamental Theorem of Calculus: $\frac{d}{dx}\int_a^x f(t)dt = f(x)$ and $\int_a^b f'(x)dx = f(b) - f(a)$

Incremental formula: $\delta y \approx \frac{dy}{dx} \, \delta x$

n 1

Space and measurement: Measurement

Trapezium:	Area = $\frac{1}{2}(a+b) \times$ height, where <i>a</i> and <i>b</i> are the lengths of the	e parallel sides
Prism:	Volume = Area of base \times height	
Cylinder:	Total surface area = $2\pi r h + 2\pi r^2$	Volume = $\pi r^2 \times h$
Pyramid:	Volume = $\frac{1}{3}$ × area of base × height	
Cone:	Total surface area = $\pi rs + \pi r^2$, <i>s</i> is the slant height	Volume = $\frac{1}{3} \times \pi r^2 \times h$
Sphere:	Total surface area = $4\pi r^2$	Volume = $\frac{4}{3}\pi r^3$

Volume of solids of revolution about the axes: $\int \pi y^2 dx$ and $\int \pi x^2 dy$

2

Space and measurement: Rate

If y' = ky, then $y = Ae^{kx}$

Chance and data: Quantify chance

Probability Laws

 $P(A) + P(\overline{A}) = 1$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

 $P(A \cap B) = P(A)P(B / A) = P(B)P(A / B)$

Binomial distributions: Mean: $\mu = np$ and standard deviation: $\sigma = \sqrt{np(1-p)}$

Chance and data: Represent data

Central Limit Theorem:

Mean of the sample means, \overline{X} , equals the population mean, μ

Standard deviation of the sample means equals $\frac{\sigma}{r}$

uais
$$\frac{1}{\sqrt{n}}$$

where σ is the population standard deviation.

Chance and data: Interpret data

Infer the mean of a population from a sample using $\overline{x} - z \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z \frac{\sigma}{\sqrt{n}}$

where z is the standard score for a confidence interval.

Note: Any additional formulas identified by the examination panel will be included in the body of the particular question.